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Executive Summary

The low-cost microsensors deployed within the CITI-SENSE project have signifi-
cant potential for improving high-resolution mapping of air quality in the urban
environment. However, one major shortcoming of the data obtained by such
sensors is that there are significant data gaps in both space and time. To over-
come this issue, we present a data fusion method based on geostatistics that al-
lows for merging crowdsourced observations of air quality with the information
from an urban-scale air quality model. The performance of the methodology
is evaluated using a simulated dataset of NO2 over the city of Oslo, Norway.
First results indicate that the method is capable of producing a concentration
field that replicates the spatial patterns of a simulated true concentration field.
Cross-validation of the fused concentration field carried out against a second
set of simulated observations shows that the technique provides a robust way
of bias-correcting the model information and that the prediction errors are on
the order of the same magnitude as the perturbation applied to the simulated
values. The achievable accuracy of the data fusion method is highly dependent
on the number of observations and their spatial distribution.
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1 INTRODUCTION

1 Introduction

With an ever-increasing amount of environmental observations available through
crowdsourcing, one of the major emerging challenges is how to best make sense
of the vast amount of collected observations and how to provide citizens and
other end-users with a relevant value-added product. Air pollution is a major
environmental concern in many areas worldwide and in particular in many large
urban agglomerations (Schneider et al., 2015), with significant impacts on so-
cietal health and economy (World Health Organization, 2013; Guerreiro et al.,
2014). However, detailed observation-based urban-scale air quality maps are
very scarce as the traditional highly accurate observation network is very costly
and the resulting low number of deployed reference stations is generally not
able to adequately capture the spatial variability in air pollutants.

Recent technological advances related to sensor technology have resulted in
comparatively low-cost and small devices for measuring air quality. Using ele-
ments from Citizen Science (Hand, 2010; Serrano Sanz et al., 2014) and crowd-
sourcing (Howe, 2006), a high-density network of such low-cost air quality sen-
sors has significant potential for improving spatial mapping in general and in
urban areas in particular. However, most datasets of observations made within
a crowdsourcing framework contain substantial data gaps and the observations
are generally highly irregular point measurements, which are only representa-
tive of a relatively small area. This poses a significant challenge in using such
observations for mapping applications. One way to overcome these issues is to
combine the crowdsourced data with spatially continuous data from a model.

We present a data fusion technique for combining near real-time crowdsourced
observations of urban air quality with output from an urban-scale air pollution
dispersion model that allows for providing highly detailed, up-to-date maps
of urban air quality. Data fusion is conceptually similar to data assimilation
(Kalnay, 2003; Lahoz and Schneider, 2014). Data fusion describes a set of tech-
niques for merging two or more datasets and thus generating a product of higher
overall quality. Data fusion techniques, as a subset of data assimilation (Lahoz
and Schneider, 2014), allow for combining observations with model data in a
mathematically objective way (through the best linear unbiased estimate) and
therefore provide a means of adding value to both the observations and the
model. The gaps in the observations are filled and the model is constrained by
the observations. The model further provides detailed spatial patterns in areas
where no observations are available. As such, data fusion of observations from
high-density low-cost sensor networks together with models can contribute to
significantly improving urban-scale air quality mapping.

The manuscript is organized as follows: Section 2 gives an overview about pre-
vious work on crowdsourcing for air quality as well as data assimilation and data
fusion studies related to air quality mapping. Section 3 describes the datasets
and the model used and provides details on the data fusion methodology used.

Copyright © CITI-SENSE Consortium 2012-2016 7



2 BACKGROUND

Section 4 provides the results and discusses their implications. Section 5 sum-
marizes the study, provides conclusions and presents an outlook for future work.

2 Background

In the following section we provide a short overview of existing crowdsourcing
and citizen science efforts and describe previous work on data assimilation as
well as data fusion techniques and report on some previous research on using
these methods for applications in urban-scale air quality mapping.

2.1 Crowdsourcing for urban air quality

The traditional way of making observations of air quality in the urban envi-
ronment involves reference air quality monitoring stations placed in strategic
location throughout a city. While providing highly accurate measurements of a
large variety of air pollutants, such stations tend to be highly complex, require
significant maintenance, and are thus very expensive to set up and operate. As a
result, the network of air quality monitoring stations has always been extremely
sparse even in highly developed countries, and is close to non-existent in devel-
oping countries, which often tend to have severe issues with air pollution. The
low spatial density of air quality monitoring stations limits their usefulness for
continuously mapping urban air quality as small-scale spatial patterns cannot be
properly resolved.

In recent years, technological progress has resulted in a new class of low-cost
sensor for measuring various air pollutants such as NO2, NO, CO, O3, black car-
bon, and particulate matter (PM10, PM2.5) (Spinelle et al., 2015; Kumar et al.,
2015). Integrated within a platform for communication through the mobile net-
work or directly linking to a user-carried smartphone, such devices are generally
inexpensive, small, and lightweight. While their accuracy is at this point not suf-
ficient to replacement observations from calibrated reference air quality instru-
mentation, their other characteristics mean that they can be deployed in large
numbers throughout a region, for example within a citizen science or crowd-
sourcing framework. Such a high-density network of low-cost devices has the
potential to provide spatial and temporal information about urban air quality
at spatial scales and resolutions that were not possible in the past with conven-
tional monitoring systems.

Several studies have investigated the potential use of this new generation of air
quality monitoring devices, particularly for mobile measurements using portable
sensors. Hasenfratz et al. (2012a) presented a system for using small and portable
devices for monitoring ozone concentration using smartphones and show how
to perform an on-the-fly calibration of low-cost gas sensors based on co-located
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2 BACKGROUND 2.2 Data assimilation and data fusion

measurements (Hasenfratz et al., 2012b). The potential of crowdsourced obser-
vations of air quality to be used in conjunction with statistical land-use regres-
sion models was also demonstrated for mapping urban-scale air quality (Hasen-
fratz et al., 2014). Mead et al. (2013) deployed a network of low-cost, elec-
trochemical gas sensors in Cambridge, United Kingdom, and found that even
though these devices were designed for sensing at parts-per-million mixing ra-
tios, they can actually be used at the parts-per-billion level given suitable config-
uration and operation. They conclude that sparse, static, traditional monitoring
stations are not capable of fully characterizing the urban environment and that
low-cost microsensors are able to provide a much more complete assessment of
the small-scale spatial and temporal variability of urban air quality.

Peters (2013) describes the use of bicycle-based mobile measurements for mea-
suring PM10 and ultrafine particles along a street network. Similarly, Peters et al.
(2014) demonstrate the bicycle-based measurement of black carbon and ultra-
fine particles for studying the micro-variability of street-level air pollution and
the exposure of bicyclists. Castell et al. (2014) show how mobile technologies
and low-cost sensors can be applied for environmental monitoring and in par-
ticular for measuring air quality at the street level. Other studies use novel
technologies such as smartphones and personal air pollution sensors to exam-
ine the diurnal variability in personal air pollution levels and the relationship
between modeled and measured exposure to air pollutants in different microen-
vironments (Nieuwenhuijsen et al., 2015). Van den Bossche et al. (2015) used
bicycle-based mobile monitoring to map the black carbon in an urban environ-
ment and found that it can provide insight into the spatial variability within the
urban environment, given a sufficient number of passes along each road segment
in order to reduce short-term temporal variability. Moltchanov et al. (2015) de-
ployed a network of metal-oxide wireless sensors and found that in general the
individual network nodes exhibited high inter-node consistency and sensitivity
to their respective local microenvironments. However, sensor-specific temporal
variation of the calibration parameters was observed, which was corrected using
observations from a nearby air quality monitoring station.

2.2 Data assimilation and data fusion for urban scale map-
ping of air quality

Data assimilation in general is a way of combining model information with ob-
servations in a mathematically objective way (by providing the best linear unbi-
ased estimate). As such it provides the possibility to create self-consistent and
realistic representations of the Earth system (Kalnay, 2003; Lahoz and Schnei-
der, 2014). In this process, value is added to both the observations and the
model: The spatial and temporal gaps in the observations are interpolated in
a meaningful way, while the model is constrained by the observations. Data
assimilation is carried out using many different techniques. Some data assimi-
lation methods can actively interact with the model. These include variational
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2.2 Data assimilation and data fusion 2 BACKGROUND

methods such as 2D-VAR, 3D-VAR, and 4D-VAR (Lahoz and Schneider, 2014),
and sequential methods such as the Kalman Filter (KF) (Kalman, 1960), the Ex-
tended Kalman Filter (Bouttier and Courtier, 1999) and the Ensemble Kalman
Filter (EnKF) (Evensen, 2003). Lahoz and Schneider (2014) provide a compre-
hensive overview of these types of data assimilation methods. Other data assim-
ilation methods, which we refer to here as data fusion techniques, are based on
a wide variety different statistical techniques. The goal of all these methods is to
combine the various data sources and to provide an optimal estimate of the spa-
tial distribution of the parameter in question (Denby et al., 2008). While spatial
interpolation techniques have been used in the past for data fusion purposes in
various fields, not many studies exist that apply such methods for urban-scale
air quality mapping.

Van De Kassteele et al. (2006) performed statistical mapping of annual surface
PM10 concentrations over Western Europe by fusing observations from air quality
monitoring stations with both dispersion model output of the LOng Term Ozone
Simulation-EURopean Operational Smog model (LOTOS-EUROS) (Schaap et al.,
2008) and satellite data of aerosol optical thickness acquired by the Moder-
ate Resolution Imaging Spectroradiometer (MODIS). Similarly, van de Kassteele
et al. (2009) used kriging with external drift to combine NOx (NOx = NO +
NO2) observations with the output from a dispersion model. They found that a
reduction in the density of the reference monitoring network for air quality can
be compensated by geostatistical methods. Tilloy et al. (2013) used a Kalman
filter approach to assimilate air quality observations from 9 fixed stations into
an urban air quality model. Applying a model covariance function that heavily
relies on the shape of the street network, they find that the root mean squared
error of the assimilated fields is reduced by 30-50 % over the model fields when
station density is high. Silibello et al. (2014) compared two data assimilation
approaches, namely the successive corrections methods and optimal interpola-
tion, to combine air quality observations with the output of a regional air quality
model. Johansson et al. (2015) describe an infrastructure for performing data
fusion of meteorological and air quality data for local and regional domains and
find that hourly local NO2 concentrations can be estimated more accurately with
data fusion techniques than with conventional extrapolation methods.

Denby et al. (2008) assessed the performance of two data assimilation methods
used together with the LOTOS-EUROS model (Schaap et al., 2008) for assess-
ing PM10 exceedances on the European scale. The compared methods included
the EnKF (Evensen, 2003) and spatial interpolation based on a combination of
residual kriging and linear regression. They found that assimilating the obser-
vations based on the spatial interpolation technique provided significantly su-
perior results over those obtained from EnKF for their specific case study, with
the root mean squared error (RMSE) of the daily mean concentrations of PM10
at pre-selected validation stations being 9.2 µg m-3 for the spatial interpolation
technique and 13.5 µg m-3 for EnKF. The poor performance of EnKF in this is
case was primarily due to model bias which the used bias correction scheme
was not able to properly account for. The residual kriging technique was found
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to be much less sensitive to model bias. Based on these results in this paper
we also use a combination of residual kriging and linear regression as our data
fusion method.

To our knowledge, no previous studies have applied data assimilation and data
fusion techniques for combining data from an urban-scale dispersion model with
crowdsourced observations of air quality.

3 Methodology

3.1 The EPISODE dispersion model

EPISODE is a 3-D Eulerian/Lagrangian dispersion model that provides urban-
and regional-scale air quality forecasts of atmospheric pollutants. The model,
which is described in detail in Slørdal et al. (2003), is a Eulerian grid model with
embedded subgrid models for computing the various pollutant concentrations
that result from area-, point-, and line-based emission sources. Applying finite
difference numerical methods, EPISODE integrates forward in time and solves
the time-dependent advection and diffusion equation on a three-dimensional
grid. Furthermore, EPISODE provides schemes for advection, turbulence, depo-
sition, and chemistry. EPISODE contains a sub-grid line source model based on a
standard integrated Gaussian model (Petersen, 1980), which computes the con-
centration levels of non-reactive pollutants from road traffic over distances up to
hundreds of meters downwind. Most commonly, EPISODE is used for modeling
airborne species such as NO2, NOx, PM10, PM2.5, CO, and SO2.

While EPISODE can be run at horizontal spatial resolutions down to 100 m, it is
most typically run at 1000 m horizontal spatial resolution as this is the spatial
scale at which areal emission are known most reliably. Figure 1 shows an ex-
ample of EPISODE output for NO2 over the city of Oslo, Norway, at the original
spatial resolution of 1 km. However, as 1000 m horizontal spatial resolution is
not sufficient for use in detailed urban mapping we apply a downscaling pro-
cedure using a dense network of receptor points and EPISODE’s capability to
calculate the concentration at a point based on the raster-based areal emission
and vector-based line source emissions.

3.2 Downscaling EPISODE data

The 1000 m × 1000 m horizontal spatial resolution at which EPISODE is gen-
erally run is not sufficient for providing the detailed spatial patterns that are
required when using the data for fusion with crowdsourced observations. For
this reason we use a downscaling procedure to obtain high-resolution concen-

Copyright © CITI-SENSE Consortium 2012-2016 11



3.2 Downscaling EPISODE data 3 METHODOLOGY

Figure 1 – Example of hourly output of the surface layer from the EPISODE dis-
persion model at original spatial resolution (1000 m × 1000 m with a 20 m layer
height) for concentrations of NO2, given in units of µg m-3. Shown is the area of
greater Oslo, Norway on a typical moderately polluted winter day.

trations fields of 100 m × 100 m horizontal spatial resolution or even lower
(Denby et al., 2014).

The downscaling procedure used here exploits the fact that line source emissions
such as roads in the model are given at essentially “infinite” spatial resolution
as they are stored as vector-based line data. As line sources are a major source
of pollutant emissions affecting air quality in urban areas, the model is able to
provide information at much higher spatial resolution than what would be ex-
pected based on the gridded input data alone. The downscaling is performed
following Denby et al. (2014) by distributing a high-density network of receptor
points within the modelling domain. These points are distributed both at reg-
ular sampling intervals throughout the domain and, in addition, at a substan-
tially higher density along roads and other line sources. The density decreases

12 Copyright © CITI-SENSE Consortium 2012-2016



3 METHODOLOGY 3.2 Downscaling EPISODE data

exponentially with distance from the line source. The model then calculates the
concentration at each receptor point taking into account raster-based areal emis-
sions and vector-based emissions from line sources. The resulting high-density
set of concentrations is then interpolated to the desired output resolution using
geostatistical techniques (ordinary kriging).

It should be noted that the downscaled map is not directly comparable in terms
of absolute concentrations to the original gridded concentration fields at coarse
resolution. The reason for this lies in the vertical representativity of the model
output. While the original 1000 m spatial resolution grids represent the lower-
most model layer which ranges from the surface to a height of 20 m, the receptor
points are located at 2 m height above the surface. As such, the receptor points
generally exhibit significantly higher concentrations than the average over the
lowermost 20 m. While the two datasets can therefore not be directly compared
with each other, the lower vertical representativity of the downscaled map has
the advantage of being a more realistic estimate of what people are exposed to
at the street level.

Figure 2 shows an example result of the downscaling methodology for the 2011
annual average concentrations of NO2 in the area of greater Oslo, Norway. The
top left panel shows the original gridded output of EPISODE. The downtown
area of Oslo slightly north of the center exhibits the highest values. A simple
bilinear interpolation from 1 km × 1 km to 100 m × 100 m is shown in the top
right panel. This method of downscaling does not use any other information
besides what is available in the original 1 km × 1 km resolution concentration
field generated by the EPISODE model. It is therefore not able to provide any
additional information about fine-scale spatial patterns. In contrast, our down-
scaling method uses a dense network of receptor points (bottom left panel),
which were distributed on both sides along major road links in increasing dis-
tance intervals up to a distance of 400 m. Outside of those areas the receptor
points were distributed on a regular grid pattern of 500 m distance. The bottom
right panel of Figure 2 shows the downscaled maps after spatial interpolation of
the receptor point values using ordinary kriging.

Using EPISODE and the described downscaling methodology, high-resolution
annual average concentration fields were derived , which were used as a basemap
or climatology (long-term mean) for the data fusion process. Figure 3 shows ex-
amples of basemaps for NO2, PM10, and PM2.5 derived from the model and the
corresponding experimental and fitted semivariograms. A semivariogram is a
function describing the characteristics of the spatial correlation between obser-
vations and is frequently used in geostatistics (Goovaerts, 1997; Wackernagel,
2003; Chilès and Delfiner, 2012). While the maps for NO2 and PM10 show simi-
lar spatial patterns with quite rapid gradients, which are primarily linked to line-
source emissions from road transport, the map for PM2.5 shows overall smoother
patterns indicating a stronger link to areal emissions such as domestic heating
and woodburning.

Copyright © CITI-SENSE Consortium 2012-2016 13
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Figure 2 – Downscaling methodology for EPISODE. The panels show the 2011 an-
nual mean surface NO2 concentration in the area of Oslo, Norway, in units of µg m-3.
Top left panel: Original gridded output from the EPISODE model at 1000 m hori-
zontal spatial resolution. Top right panel: The original 1000 m concentration grid
regridded to 100 m horizontal spatial resolution using simple linear interpolation.
Bottom left panel: Original gridded EPISODE concentration with locations of recep-
tor points overlaid in black. Bottom right panel: Downscaled concentration field
at 100 m horizontal spatial resolution derived through spatial interpolation of the
receptor points. Note that the receptor points are located at 2 m above the surface,
whereas the original gridded concentration field represents the vertical average over
the lowermost 20 m of the atmosphere. This causes the downscaled concentrations
to be higher than the original gridded concentration field. The coordinates are given
in units of meters in the UTM32N projection using the WGS84 datum.

This is also clear in the respective semivariograms for the three maps (Figure 3).
The semivariogram for NO2 was fitted by an exponential model with 117.0 sill
(the semivariance value at which the variogram levels off) and a range (lag dis-
tance at which the semivariogram reaches the sill value) of 9493 m with a nugget
effect (a non-zero semivariance at the origin typically representing varaibility at
distance smaller than the sampling distance) of 0.86. The semivariogram for
PM10 was fitted with an exponential model with 12.7 sill and a range of 7553 m
with a nugget effect of 0.42. Finally, the semivariogram for PM2.5 was fitted with
a spherical model of 2.24 sill and a range of 11868 m. It is clear from both the
maps in Figure 3 and the empirical as well as fitted semivariograms that both
NO2 and PM10 exhibit a similar behavior in terms of spatial gradients, whereas
the model output for PM2.5 indicates less strong spatial gradients.
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Figure 3 – Downscaled model-derived basemaps (left column) for NO2, PM10, and
PM2.5 as produced by the EPISODE model and the corresponding semivariograms
(right column) for Oslo, Norway. All concentrations given in µg m-3. The coor-
dinates are given in units of meters in the UTM32N projection using the WGS84
datum.

3.3 Simulated observations

In order to test the system against a known reference, observations were sim-
ulated from a modeled concentration field, which was considered as the true
state of the atmospheric composition for this evaluation. The hourly concen-
tration field for 8 January 2013 at 08:00 CEST was used here for this purpose,
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representing typical winter conditions in Oslo. Observations were simulated first
retrieving the modeled concentration at a given set of locations. These were then
separately perturbed with 1) a simulated bias (Gaussian with zero mean and a
standard deviation of 5 µg m-3) and 2) a simulated random error (Gaussian with
zero mean and a standard deviation of 10 µg m-3). These standard deviations
have been chosen to roughly approximate the typical error characteristics of real
low-cost microsensors resulting from comparison exercises against reference air
quality monitoring stations.

3.4 Data fusion methodology

The data fusion methodology applied here is based on geostatistical principles
(Isaaks and Srivastava, 1989; Cressie, 1993; Goovaerts, 1997; Kitanidis, 1997;
Wackernagel, 2003; Webster and Oliver, 2007; Sarma, 2009; Chilès and Delfiner,
2012). It uses universal kriging to combine observations with model data by pre-
dicting the concentrations at unknown location by simultaneously interpolating
the observations and using the model data to provide information about the
spatial patterns.

In contrast to ordinary kriging, universal kriging allows for the overall mean to
be non-constant throughout the domain and to be a function of one or more ex-
planatory variables. Universal kriging is similar to kriging with external drift and
mathematically equivalent to regression kriging (Hengl et al., 2007) or residual
kriging (Denby et al., 2010; Horálek et al., 2013) but can perform the linear
regression against auxiliary variables and the spatial interpolation of the corre-
sponding residuals in a single step. Universal kriging assumes a non-stationary
mean and in addition the presence of local spatial variation. As such the pa-
rameter in question is modeled by a deterministic regression component that
provides the large-scale spatial variation and provides spatial patterns in areas
where no observations are available, and a kriging component that provides the
small-scale random variation.

In general, the estimated concentration Ŷ (s0) at point s0 is computed as

Ŷ (s0) = c + a1 · x1(s0) + a2 · x2(s0) + . . .+ ap · xp(s0) + ε(s0) (1)

where c is a constant, a1, a2, etc are regression coefficients, X1, X2, . . ., X p are
the values of the p predictor variables of the regression component, and ε is a
stationary random process with a given semivariogram. In matrix notation we
get

Y =





Y1
...

Yn



=





1 x1(s0) · · · xp(s0)

1
...

...
1 x1(sn) · · · xp(sn)













c
a1
...

ap









+





ε1
...
εn



= Xa+ ε (2)
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where Y indicates the estimated values at all prediction locations, X represents
the values of the predictor variables at all locations, a is the vector of regression
coefficients, ε indicates the vector of residuals error that is estimated using krig-
ing with the know semivariogram model, n is the number of prediction locations
and p is the number of predictor variables.

In practice, the spatial trend or drift ε of the mean is estimated here using a single
predictor variable, which is the annual average concentration map provided by
the EPISODE chemical dispersion model (see Figure 3). The observations are
provided by the air quality sensors deployed throughout the environment. As
such, the system takes the overall spatial patterns of the concentration field from
the annual average map, which acts as a climatology (essentially a long-term
mean), and adjusts this field based on the observations.

Before the actual data fusion takes place, both the modeled and observed con-
centrations are first transformed into log-space using the natural logarithm. This
approach follows previous work such as that carried out by Denby et al. (2008),
De Smet et al. (2010), and Horálek et al. (2014) and is done because the fre-
quency distribution of observed and modeled concentrations most often resem-
bles the lognormal distribution. A log-transformation therefore is able to convert
these distributions into an approximately Gaussian distribution, which is what
is assumed for universal kriging. Taking the lognormal distribution of the con-
centrations into account has further been shown to provide superior mapping
accuracy (Denby et al., 2008; Horálek et al., 2013).

The theoretical semivariogram required for calculating the covariances in the
kriging process was fitted automatically to the empirical semivariogram for each
new set of observations (generally at hourly intervals). The variogram model
types were kept the same as those derived for the model-derived basemaps (Fig-
ure 3), while the respective range of the models was allowed to vary by up to
30% around the values derived for the basemaps. The nugget and sill parame-
ters were allowed to vary freely.

After universal kriging is carried out in log-space, the resulting concentration
field and the corresponding mapping uncertainty have to be back-transformed
from log-space. Denby et al. (2008) showed that the theoretical back-transformed
expectation value of a concentration C is given as

E [C] = exp

�

µ+
σ2

2

�

(3)

where µ and σ represent the mean and standard deviation of the log-normal-
transformed data, respectively. In practice the concentration values resulting
from the data fusion process are thus back-transformed by exponentiation with
the kriging error as

Ẑ(s0) = exp

�

Ŷ (s0) +
σ2(s0)

2

�

(4)
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where Ẑ(s0) is the estimated back-transformed concentration value at point s0,
Ŷ (s0) is the concentration at point s0 resulting from the data fusion process, and
σ(s0) is the kriging standard deviation at point s0 (De Smet et al., 2010).

The theoretical back-transformed variance of the log-normal distribution is com-
puted as

var [C] =
�

exp(σ2)− 1
�

· exp
�

2µ+σ2
�

(5)

where µ and σ represent the mean and standard deviation of the log-normal-
transformed data, respectively (Denby et al., 2008). Thus the back-transformed
standard deviation (uncertainty) δ(s0) at point s0 of the fused map can be cal-
culated in practice as

δ(s0) =
Ç

exp
�

σ2(s0)− 1
�

· exp
�

2 · Ŷ (s0) +σ2(s0)
�

(6)

where σ(s0) is the kriging standard deviation at point s0, and Ŷ (s0) represents
the concentration at point s0 resulting from the data fusion process (Denby et al.,
2008; De Smet et al., 2010).

3.5 Quantification of mapping accuracy

Three methods for estimating the uncertainty and quantifying the mapping ac-
curacy have been used in this study.

Kriging uncertainty All kriging variants including the one used here provide
a spatial estimate of kriging uncertainty. This essentially represents the uncer-
tainty associated with the spatial interpolation process itself and should not be
interpreted as an overall uncertainty of the resulting prediction map. Figure 5
(bottom left panel) shows an example of such a map.

Leave-one-out cross-validation One of the most common ways of assessing
the mapping accuracy is to compare the the estimated concentrations against
measured values. Ideally, if an independent set of accurate observations exists,
it can provide the basis for a validation. However, in many cases no such dataset
exists. In that case the original set of observations can be split into a dataset used
for prediction and a dataset used for validation. This is called cross-validation
(Cressie, 1993; Goovaerts, 1997) and is for example implemented in K-fold cross
validation, where the observation dataset is randomly split into K equally size
parts (commonly K = 5 or K = 10) and one of those parts is used solely for
validation. This process is then repeated K times such that each part is used for
validation. If the total number of observations is quite low, as it is the case in
this study, using such relatively large fractions of the data solely for validation
would lower the number of observations used for prediction by an unacceptable
magnitude (and thus significantly decrease the prediction accuracy). In this
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case, a technique called leave-one-out cross-validation, which is a special case
of K-fold cross validation where K = n with n being the number of observations
(Hengl, 2009), can be used. This technique excludes only one sample at a time
from the prediction process in order to be used solely for validation purposes,
and thus preserves the vast majority of observations for the actual mapping.
Here we therefore use leave-one-out cross-validation in order to estimate the
mapping accuracy against the original observations.

The following statistical metrics have been used to evaluate the results from
the cross validation: The Mean Prediction Error (MPE) which is the same as the
average bias, is calculated as

MPE=
1

N

N
∑

i=1

�

Y (si)− Ŷ (si)
�

(7)

where N is the number of observations, Y (si) is the observed concentration at
point si , Ŷ (si) is the estimated concentration at point si . An MPE closer to zero
indicates a better estimation. In addition, the standard deviation of the differences
s was calculated as

s =

√

√

√

√

1

N

N
∑

i=1

h

�

Y (si)− Ŷ (si)
�

−
�

Y (si)− Ŷ (si)
�i2

(8)

where Y (si)− Ŷ (si) indicates the mean of the differences between observations
and estimates. The Root Mean Squared Error (RMSE) is calculated as

RMSE=

√

√

√

√

1

N

N
∑

i=1

�

Y (si)− Ŷ (si)
�2

(9)

A smaller RMSE value indicates a better estimation. Finally, the Mean Absolute
Error was calculated as

MAE=
1

N

N
∑

i=1

�

�Y (si)− Ŷ (si)
�

� (10)

A smaller MAE indicates a better estimation. In addition to these statistics, it
can also be helpful to fit a linear regression model to the pairs of predictions
and observations. The resulting regression statistics such as intercept, slope,
and the coefficient of determination (R2) can provide additional information on
the accuracy of the fused map with respect to the original observations.

Figure 4 shows a typical scatterplot visualizing sample results of a leave-one-out
cross-validation exercise for data fusion of simulated NO2 values. In general the
data points appear to follow the 1:1 reference line reasonably well. However,
it can be seen that relatively low concentrations between 40 µg m-3 and 55 µg
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Figure 4 – Typical scatterplot of observations against concentrations estimated
within the data fusion process, given in µg m-3. In this case the observations were
simulated from a “true” concentration field by adding random noise to the true con-
centrations. The gray error bars indicate the prediction uncertainty related to the
spatial interpolation process. The black line shows the 1:1 reference line. The blue
line indicates a robust locally weighted regression fit (LOESS) (Cleveland, 1979;
Cleveland and Grosse, 1991) to the data and the surrounding dark gray area shows
the corresponding 95% confidence interval of the Loess fit.

m-3 are estimated much more accurately than concentrations of greater than
60 µg m-3. The spatial predictions of higher concentrations in this case tend to
slightly underestimate the true values in general, as can be seen by the Loess
fit (Cleveland, 1979; Cleveland and Grosse, 1991) being slightly below the 1:1
line for observations exceeding 60 µg m-3. In addition there are two positive
outliers, whose confidence interval do not intersect with the confidence interval
of the Loess fit. Such overestimates likely are due to the fitted semivariogram
(and particularly its range) not being able to replicate very sharp local gradients
near the street network.

Ensemble data fusion The previous two methods of quantifying the mapping
accuracy do not take into account the uncertainty in the observations. This can
be accomplished by perturbing the observations with error characteristics that
have been measured in laboratory and field validation experiments. This creates
and ensemble of observations. Subsequently, the data fusion algorithm can be
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4 RESULTS AND DISCUSSION

applied to the entire ensemble. The ensemble mean and its standard deviation
then can be seen as the most likely concentration field and its corresponding
uncertainty, given the uncertainty in the observations.

4 Results and Discussion

In the following we describe the results from applying the data fusion technique
with urban-scale model data and crowdsourced observations. We show some
examples and discuss the implications.

4.1 Data fusion with simulated observations

Figure 5 shows an example of applying the data fusion methodology to a sim-
ulated example for the city of Oslo, Norway. The top left panel shows a “true”
concentration field which is supposed to be recreated using incomplete data.
The truth field here represents the modeled concentration of NO2 in the Oslo
area at 08:00 CEST on 8 January 2013. The top center panel shows the two
datasets that are available for the data fusion. This includes in the background
the model proxy dataset, in this case the 2014 annual average concentration field
of NO2 while the points represent observations of NO2 which were simulated
from the “truth” field using a random perturbation of 10 µg m-3. The locations
of the simulated observations are the same as used in a real-world deployment
of static sensor nodes in the CITI-SENSE project (www.citi-sense.eu). Note
that the color scale used is the same for both datasets, so the observations in-
dicate significantly higher concentrations than the model-based proxy dataset
would predict.

The top right panel of Figure 5 shows the result of a fusion of the two datasets
shown in the top center panel, following the methodology described in Section
3.4. It can be observed that that the spatial patterns in general are quite well
replicated. Even more importantly, the overall levels appear quite similar to
those in the truth field. One area that is not picked up well by the data fusion
process is the relatively high concentrations in the southwestern corner of the
truth field. This is because there were no observations available in this area.

The bottom left panel of Figure 5 shows the uncertainty associated with the
universal kriging process and the locations of the simulated observations (as
points). It can be seen that the interpolation error is quite low in areas where
many observations are available. However the uncertainty increases towards the
southwest and northwest where no observations are available. The uncertainty
map shown here includes both the uncertainty related to the regression compo-
nent of universal kriging as well as as the uncertainty resulting from the spatial
interpolation process. However, it should be noted that this uncertainty does not
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4 RESULTS AND DISCUSSION 4.1 Data fusion with simulated observations

give an indication of the overall true uncertainty since the measurement error
in the observations is not considered at this point.

In order to see how the modeled concentration field has been modified during
the data fusion process based on the observations, it is helpful to calculate a
difference image between the original modeled long-term mean and the fused
map (see bottom center panel of Figure 5). In this example, the difference map
indicates that the concentration field has been increased throughout most of the
domain, while in the southeastern corner the concentration values have been
mostly left as they were predicted by the model. It can also be observed that the
concentrations along some of the larger roads, particularly in the western half
of the mapping domain, have been increased more than the surroundings.

For evaluating the success of the data fusion algorithm it can further be helpful
to compute a difference image between the truth field and the fused result. Such
a map is shown in the bottom right panel of Figure 5. It can be seen that the
differences are quite close to zero in those areas where the majority of the sim-
ulated observations were located. In areas outside of the center of the mapping
domain the error increases. In the southern half of the mapping domain the
differences are primarily negative (indicating that the concentration field had
higher values in these areas than the fused map was able to recover), whereas
towards the north of the mapping domain, the differences tend to be mostly pos-
itive (indicating that the fused map overestimated the true concentration field
in this regions).

In order to evaluate to what extent the data fusion algorithm has been able
to combine the model information with observations to replicate the simulated
truth field as closely as possible, a set of 20 locations selected randomly through-
out the mapping domain was selected. At these “validation stations” the corre-
sponding values of model basemap, true concentration field and fused concen-
tration field were extracted.

Figure 6 shows an example where the NO2 concentrations of the basemap were
significantly higher than those of the simulated true concentration field. The
truth dataset used here represents the modeled concentration field on 1 July
2013 at 08:00 CEST. The figure shows that the data fusion process is able to
correct the bias resulting from the basemap and to provide concentration values
at the 20 locations that are much closer to the true concentration fields in most
cases. It should be noted that in a small number of cases, for example for stations
1 and 15, the fused values are higher than the model-estimated values. This can
occur when the nearest observation site had a quite high measurement error and
thus negatively affected the concentration field in its surroundings. Overall, the
statistics show that the data fusion was able to improve the initial estimate by
the model quite significantly. While the RMSE between model and true values
was 18.4 µg m-3, the RMSE between fused estimate and true values was reduced
to 9.2 µg m-3.
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Figure 6 – Comparison of NO2 concentration for truth map, basemap, and fused
results, extracted at 20 validation stations which were randomly placed through-
out the study area. The figure shows the results for a summer day (1 July 2013
08:00 CEST) with quite low overall NO2 concentrations, for which the annual av-
erage basemap significantly overestimates the true concentrations. The data fusion
algorithm corrects the basemap such that the fused results are able to quite closely
replicate the true state of the atmosphere.

Similarly, Figure 7 shows an example where the overall levels of the basemap
are significantly lower than those of the simulated true concentration field. Once
again the data fusion process was able to correct the modeled concentration field
using the observations such that the fused values are much closer to true sim-
ulated values. The difference between the concentration from the fused field
and the truth varies slightly among the 20 validation stations. This is due to the
fact that the validation stations were selected randomly and thus some of them
happen to be in areas were no observations were available. The further the val-
idation site is away from observations sites, the higher the difference between
the true concentration at the validation site and the estimated concentration will
generally be. In this example, the first-guess RMSE between modeled basemap
and true observations is 32.2 µg m-3. The data fusion method was able to sig-
nificantly reduce this RMSE to a value of only 6.2 µg m-3.

The achievable mapping accuracy is dependent on the number of observation
sites available throughout the mapping domain. A higher number of sites is
able to capture more of the spatial detail, or, when used in combination with the
modeled concentration field, is able to adjust the modeled information in more
regions than if only few observations are available. In order to test the impact
of the number of available observations sites on the mapping accuracy, we sam-
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Figure 7 – Same as Figure 6 but for a winter day (8 January 2013 08:00 CET)
with generally quite high NO2 concentrations. Here the long-term average concen-
trations given by the basemap significantly underestimate the true concentrations,
while the data fusion process is able to replicate the true values quite closely.
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Figure 8 – Relation between the mapping accuracy as measured by the RMSE of the
leave-one-out cross validation and the number of simulated stations throughout the
entire mapping domain.
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pled a set of 150 observations sites from the ”truth“ field and ran the data fusion
algorithm with an increasing number of sites from this set. The mapping accu-
racy was subsequently determined using leave-one-out cross-validation (Cressie,
1993). Figure 8 shows the relationship between the RMSE metric as determined
from leave-one-out cross-validation and the number of simulated observations.
It can be seen that the RMSE for this particular example decreases significantly
from around 70 µg m-3 at 10 simulated observations to around 5 µg m-3 at 50
simulated observations. From this point on any further decreases in RMSE are
not significant. The step from 10 to 20 observations already reduces the corre-
sponding RMSE by over 300 %. RMSEs of 10 µg m-3 and less were achieved for
more than 30 observations. However, it should be noted that the relationship
shown in Figure 8 varies with each new simulated dataset and should thus be
seen only as indicative.

4.2 Data fusion with real observations

At the time of the writing of this deliverable, the planned observation network
of Geotech sensors in the various CITI-SENSE locations was not active yet, so
no real-world data was available for testing the mapping approach. However,
as soon as the main deployment phase of CITI-SENSE will start, the data fusion
methodology will be applied to the near-real time observations made by the
Geotech sensors. A system has been developed to fully automatize the process.
First, the last hour’s set of city-wide Geotech observations is retrieved for all CITI-
SENSE locations from the Snowflake server. Subsequently, for each hour, each
CITI-SENSE location, and each species (NO2, PM10, PM2.5) the data fusion code
is run using the corresponding Geotech observations and a basemap depicting
annual average concentrations. These basemaps were producted for Oslo using
the EPISODE dispersion model and for the other CITI-SENSE locations using a
land-use regression model (Wang et al., 2014).

Finally, resulting concentration maps are converted to maps depicting the Com-
mon Air Quality Index (CAQI) (Van Den Elshout et al., 2014). An example is
shown in Figure 9, where the bottom left panel indicates the CAQI grid values
(ranging from 0 to 100) calculated for a fused map of NO2 on 8 January 2013
in Oslo. It can be seen that the general spatial patterns of the concentration
field as well as the spatial gradients remain visible even after the oversion to the
index. The bottom right panel of Figure 9 shows the CAQI classes representing
air quality (ranging from very low to very high). Due to the coarse nature of the
classes the spatial gradients have now disappeared, however the general spatial
patterns of the concentration field can still be observed.
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Figure 9 – “Truth” map for a winter day in Oslo (top left panel), the result of applying
the data fusion algorithm to the modeled basemap and simulated observation to
replicate the true state of the atmosphere (top right panel), the grid values of the
Common Air Quality Index (CAQI) (Van Den Elshout et al., 2014) derived from the
fused concentration map (bottom left panel), and the CAQI classes derived from the
CAQI grid values (bottom right panel).

5 Conclusions

A methodology is presented to combine observations from a large number of
crowdsourced air quality monitoring devices at static locations with information
from a high-resolution urban-scale air quality model. The result of the data
fusion process, which is based on geostatistical techniques, is a new value-added
map representing the best-guess concentration field at the time at which the
observations were made. This concentration field inherits properties from both
input datasets.

For evaluation purposes, the methodology has been tested using simulated data-
sets for which a “true” concentration field was known. Point-based observations
were then sampled from this “truth” field and a random error component was
added. The outcome of the data fusion process has then been evaluated against
the original “true” concentration field both for the entire mapping domain and
at simulated validation stations. The results indicate that the concentration field
provided by the data fusion technique is able to quite well replicate the original
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concentration field in terms of both spatial patterns and absolute values. While
there is a strong dependence of the achievable mapping accuracy on the total
number of available stations providing air quality observations, the mapping
accuracy for, e.g. NO2, was found to reach RMSE values of less than 5 µg m-3

when a total number of 50 or more simulated stations were used throughout the
mapping domain.

We show that data assimilation and data fusion of crowdsourced air quality ob-
servations with model information offers a novel way of generating spatially
detailed maps of air quality in the urban environment. Testing of the methodol-
ogy has so far been limited to simulated observations, however the data fusion
technique will be applied to real-world data collected by the Geotech sensors
as soon as they are deployed throughout the various location as part of the full
deployment phase of CITI-SENSE. Additional future work will focus on improv-
ing the characterization of the spatial representativity and the uncertainty of the
crowdsourced observations.
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