

White Paper Report

CITI-SENSE in numbers

June 2016

Summary

The main concept behind the CITI-SENSE project is to empower citizens through Citizens' Observatories, enabling them to contribute to and participate in environmental governance. Citizens will be able to support and influence community and societal priorities as well as other related decision making processes.

In order to ensure the success of CITI-SENSE, the project had to:

- Raise environmental awareness amongst citizens.
- Increase user participation in community environmental decisions
- Provide feedback on the impact of citizens within decision-making processes.

CITI-SENSE started in October 2012 and runs for a period of four years, completing at the end of September 2016. Snowflake Software is excited to have been involved right from the start, bringing our years of experience with data exchange and open standards in to the consortium team's skill mix. Our contribution within CITI-SENSE was to explore through the project, how best to design and implement a solution to host both sensor and questionnaire information, allowing end users to access that same information over the internet in a secure method, and ensure the SEDS platform was performant under heavy loads, in a maintained environment.

This whitepaper aims to walk the reader through what's involved in hosting large volumes of data.

Empowerment Initiatives

The CITI-SENSE project focused primarily on three main empowerment initiatives:

- Outdoor Air Quality
- Indoor Air Quality in Schools
- Personal comfort in public spaces

Citizens from 9 cities participated in the project forming around 20 citizen observatories in Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava, Vienna and Vitoria. Static sensors (fixed sensors) were deployed in these cities to monitor various environmental components of air quality. Mobile sensors (personal sensors) were distributed and allowed citizens to monitor air quality as they moved around the city.

Data Models

Data collection can be a complicated process, and it is important before doing any data collection to consider what it is you want to collect and why – what data analysis might be undertaken. Snowflake Software often use UML modelling to construct a logical model of the real world information being collected and how pieces interact with one another. This

certainly helps to understand what you do and don't need to collect, saving time by ensuring data that will be useful is recorded.

SEDS Platform

Once you know what you need to collect, you need somewhere to store it. The Spatial and Environmental Data Services (SEDS) Platform provides the core interface between data providers (those static sensors or personal sensors providing data or people completing questionnaires) and data consumers (e.g. applications developed against the platform using the raw data for analysis). The SEDS platform allows data providers to upload data collected from all sensors into a centralised data store. It also allows data consumers to access this data using open standards (WFS and REST) web interfaces.

The SEDS platform went live on the 1st September 2015 and since then a significant amount of data has been collected and added to the data store. To date, the SEDS platform stores just under 10 million observations collected by the different sensors across the 8 cities.

Total	Total
Observations *	Measurements*
9486947	88672046

* - Numbers correct at the time of writing this whitepaper.

The pie chart below shows the distribution of the data collected across the pilot cities.

Busiest Sensors

Both static and mobile sensors were placed in each city, and were used to capture observations. Static sensors captured observations at fixed locations whereas mobile sensors captured observations as the user moved around the city.

The following few tables show the top 5 busiest sensors for each sensor provider and the city these sensors were located in.

LEO sensors

Sensor ID	Observations Captured	City
LEO-666B9D4F	145899	Barcelona
LEO-666BA0D9	140408	Barcelona
LEO-666B9893	57165	Ostrava
LEO-666BA0CE	45926	Ostrava
LEO-666BA0BC	43702	Oslo

AQMesh sensors

Sensor ID	Observations	City
	Captured	
AQ_739150	132470	Haifa
AQ_703150	132377	Haifa
AQ_842150	132308	Haifa
AQ_822150	131945	Haifa
AQ_780150	131904	Haifa

Atmospheric Sensors

Sensor	Observations	City
ID	Captured	
AT_2	98236	
AT_13	95951	Oslo
AT_23	95934	Edinburgh
AT_21	95456	Edinburgh
AT_4	92031	Oslo

CITISENSE OBEO Sensors

Sensor ID	Observations Captured	City
CITISENSE-OBEO-NORBGO28339	2295	Bergen
CITISENSE-OBEO-SVNLJU28305	2272	Ljubljana
CITISENSE-OBEO-NOROSL28545	605	Oslo
CITISENSE-OBEO-NOROSL56021	554	Oslo
CITISENSE-OBEO-NOROSL28537	521	Oslo

CITISENSE JSI Sensors

Sensor ID	Observations Captured	City
CITISENSE-JSI-AQ_000SI114513	23	Ljubljana
CITISENSE-JSI-AQ_000compound12	20	Ljubljana
CITISENSE-JSI-AQ_000200543620	17	Ljubljana
CITISENSE-JSI-AQ_000200543621	17	Ljubljana
CITISENSE-JSI-AQ_000AS393511	14	Ljubljana

Summary

The AQMesh sensors in Haifa have been the busiest and the Leo sensors in Barcelona collected the most amount of observations. Haifa also has the highest values for the average CAQI values for the various pollutants, understandably so as Haifa also happens to have the biggest share of the observations that have been captured.

The CITI-SENSE project focussed on empowering citizens through Citizen Observatories and the capture and storage of information from both static and mobile sensors, to record a range of air quality sources. The information gathered was hosted and utilised by applications that focused on visualising this air quality information in a variety of formats, giving citizens first hand access to the data recorded.

Acknowledgement

The CITI-SENSE project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 308524.