

•

D2.1 TECHNICAL ARCHITECTURE

AUTHORS: JOAN MASÓ AND NÚRIA JULIÀ (CREAF)

CitiObs - ENHANCING CITIZEN OBSERVATORIES

FOR HEALHTY, SUSTAINABLE, RESILIENT, AND

INCLUSIVE CITIES

 D2.1 - Technical Architecture

2 P a g e

DISCLAIMER

This document contains material, which is the copyright of certain CitiObs beneficiaries, and

may not be reproduced or copied without permission.

The information appearing in this document has been prepared in good faith and represents the

views of the authors. Every effort has been made to ensure that all statements and information

contained herein are accurate; however, the authors accept no statutory, contractual or other

legal liability for any error or omission to the fullest extent that liability can be limited in law.

This document reflects only the view of its authors. Neither the authors nor the Research

Executive Agency nor European Commission are responsible for any use that may be made of

the information it contains. The use of the content provided is at the sole risk of the user. The

reader is encouraged to investigate whether professional advice is necessary in all situations.

No part of this document may be copied, reproduced, disclosed, or distributed by any means

whatsoever, including electronic without the express permission of the CitiObs project partners.

The same applies for translation, adaptation or transformation, arrangement or reproduction by

any method or procedure whatsoever.

COPYRIGHT MESSAGE
© CitiObs Consortium, 2023. This deliverable contains original unpublished work except

where clearly indicated otherwise. Acknowledgement of previously published material and of the

work of others has been made through appropriate citation, quotation or both. Reproduction is

authorised provided the source is acknowledged.

ACKNOWLEDGEMENT
Funded by the European Union. Views and opinions expressed

are however those of the author(s) only and do not necessarily

reflect those of the European Union or the European Research

Executive Agency (REA). Neither the European Union nor the

granting authority can be held responsible for them

 D2.1 - Technical Architecture

3 P a g e

DOCUMENT DESCRIPTION
Delivery date: 15/11/2024

Type*: Other Dissemination Level**: PU - Public

Contributing WP: WP2

Lead Partner

Organisation:

CREAF

Lead author(s): Joan Masó (CREAF)

Núria Julià (CREAF)

Contributor(s): Andreas Matheus (SECD)

Mirjam F. Fredriksen (NILU)

Oscar Gonzalez (IAAC)

Sjoerd van Ratingen (RIVM)

Philipp Schneider (NILU)

Nikos Kekatos (DRAXIS)

Reviewer(s): Nuria Castell (NILU)

Abstract: This deliverable is a collection of UML diagrams with the general

architecture of the project. That is the reason why the deliverable is

of the “other” type. The purpose of this document is to accompany

the diagrams with an explanation of their meaning. Standard APIs

for exchanging air quality data are used to communicate data

between levels.

The technical architecture illustrated in the UML diagrams and

explained in this document focuses on the components used or

developed during the project and the way they connect and interact

with each other. It introduces the overall architecture in a core

diagram. The architecture is comprised of different levels that are

explained section by section in consecutive chapters. The technical

architecture prioritizes the use of standard protocols and is based

on replaceable building blocks. A final chapter describes how this

 D2.1 - Technical Architecture

4 P a g e

approach increases the sustainability of the CITIOBS architecture

and the exploitability of the individual building blocks in other

initiatives like GEOSS.

VERSION LOG

Version Date Partner Content and changes

0.1 09/06/23 Joan Masó (CREAF) Document created

0.2 10/09/23
Joan Masó (CREAF)

Definition of the content and the

sections of the document

0.3 10/11/23
Joan Masó and Núria

Julià (CREAF)

Filling the content of sections and

acronyms

0.4 23/11/23 Núria Julià (CREAF) Figures, diagrams and references

0.5 07/12/23
Andreas Matheus

(SECD)
Revision and update

0.6 08/12/23 Joan Masó (CREAF)

Clarification that this document

accompanies a set of UML

diagrams, and the latter is the

actual deliverable

0.7 11/12/23
Joan Masó and Núria

Julià (CREAF)

Revision, update and improving

some UML diagrams

0.8 12/12/23 Nuria Castell (NILU) Review

1.0 15/12/23 Nuria Castell (NILU) Upload to the EC platform

1.1 13/11/24

Joan Masó and Núria

Julià (CREAF), Philipp

Schneider (NILU), and

Revision and update of version 2:

clarification of some sections

based on reviewers request and

 D2.1 - Technical Architecture

5 P a g e

Nikos Kekatos

(DRAXIS)

improving the general architecture

with lessons learnt and new views

1.2 14/11/24 Nuria Castell (NILU) Review

2.0 15/11/24 NILU Upload to the EC platform

 D2.1 - Technical Architecture

6 P a g e

CITIOBS
CitiObs is a four-year project funded under Horizon Europe by the European Commission.

CitiObs will consolidate and apply tools and practice-based knowledge for co-creating data,

knowledge and local action via Citizen Observatories (COs): these tools will enhance existing

and new citizen observatories to engage people from a diverse range of communities, add value

to environmental observations in the urban context, increase and validate citizen observations

of the urban environment as part of the existing in-situ Earth Observation systems, co-create

inclusive local actions for sustainability and ensure that CO data contributes to research and

policy development towards the objectives of the European Green Deal. To ensure broad use,

the CitiObs tools and approaches will be developed in co-creation with COs in 5 Frontrunner

cities, finetuned with 30 Implementer cities and showcased to 50 Fellow cities.

CitiObs will support citizen observatories in distinct cities to create/enhance/or scale up inclusive

and diverse citizen observatories, fostering in particular an active role of citizens in the

observation of the urban environment using low-cost sensor technologies and wearables, with a

particular focus on air quality and related environmental measures. CitiObs will formalise,

valorise and legitimise the role of citizen observations.

The CitiObs methodology of using a large-scale demonstration, co-design and coaching

approaches with CO stakeholders (citizens, scientists, policy/decision makers) in 5+30+50 cities

in Europe explicitly builds on the Responsible Research & Innovation (RRI) dimensions as

founding principles. Ethics consideration will be addressed consistently across all Work

Packages.

- WP1. Social dimensions of Citizen Observatories for transition governance

- WP2. Tools, Technologies, and Data Services for Citizen Observatories

- WP3. Co-creation of data and actions for healthy, sustainable and resilient cities with

Citizen Observatories

- WP4. Impact creation, Communication, Dissemination and Exploitation

- WP5. Project management

- WP6. Ethics

 D2.1 - Technical Architecture

7 P a g e

EXECUTIVE SUMMARY
This deliverable is a collection of UML diagrams with the general architecture of the project.

That is the reason why the deliverable was initially defined as “other” type. The purpose of this

document is to accompany the diagrams with an explanation of their meaning. The collection of

UML diagrams and this document describe the overall CitiObs technical architecture and

standard APIs for connecting the components. The technical architecture includes already

existing components, and components to be developed during the project. The overall

architecture is separated in several way. On one hand there is a separation between the

FrontEnd and the BackEnd. On the other hand, different data levels of processing are explained

to better illustrate the components and their interconnections.

The architecture core UML diagram introduces the overall architecture which is broken into

parts that provide further details. The technical architecture prioritizes standard protocols and is

based on replaceable building blocks.

The main objective of the architecture components is to produce data of incremental added

value. The level 1 organizes and stores raw data coming from Citizen Observatories. The level

2 (ValAir) introduces data quality, semantic interoperability and homogenizes the data resulting

in Analysis Ready Data. The level 3 (VirtualAir) provides access to some data providers in a

unified way (several ValAir providers in one end point) and the level 4 (MapAir) transforms

observational data and ancillary data into maps for decision making (resulting in Decision Ready

Information).

The architecture also includes additional components that manage data. There is an

asynchronous notification system (implemented as a PubSub service) for generating alerts and

distributing data updates. Another system is a Geospatial User Feedback Service that

implements a way for the users to comment about the data and share experiences using it.

When necessary, an authentication service (Authenix) can be used to manage user information.

The architecture also shows the different possibilities for the FrontEnd specifically targeting user

types such as decision makers (Decision Support System) or local communities (TAPIS and

Python libraries for Orange). The architecture ensures that components developed by different

participants and the FrontEnd and the BackEnd in the project can work together based on open

standards such as OGC SensorThings API and OGC SensorThings API plus (STAplus).

 D2.1 - Technical Architecture

8 P a g e

The architecture increases the sustainability of CitiObs and the exploitability of the individual

building blocks in other initiatives such as GEOSS, the Green Deal Data Space and the

Copernicus Services.

 D2.1 - Technical Architecture

9 P a g e

TABLE OF CONTENTS

ACRONYMS ...11

INTRODUCTION ..13

1.1 Purpose of the document .. 13

1.2 Scope of the document .. 13

1.3 Overview of the technical architecture .. 13

1.4 Structure of the document .. 16

SECTION 2: Level 1: From sensors to CO services ..17

SECTION 3: Level 2: Quality Control and Validation of the Data (ValAir)19

SECTION 4: Level 3: Data integration in a single-entry point (VirtualAir)...................................22

SECTION 5: Level 4: Creation of Decision Ready Information (MapAir)....................................24

SECTION 6: Notification Service: STA Pub Sub Service ...26

SECTION 7: Graphical User Interfaces ...30

7.1 Decision Support System and Dashboard .. 31

7.1.1 Overview & Design Criteria .. 31

7.1.2 Scope and Functionalities ... 37

7.1.3 Early Designs & Requirements.. 38

7.2 TAPIS – Tables from OGC APIs for Sensors .. 42

7.3 Python libraries for local communities .. 43

7.4 NiMMbus: Geospatial User Feedback ... 44

SECTION 8: Connection to other initiatives ...47

8.1 GEOSS .. 47

8.2 Green Deal Data Space .. 48

8.3 Copernicus In-Situ Component .. 48

8.4 Copernicus Atmosphere Monitoring Service ... 49

8.5 EOSC .. 49

REFERENCES ...50

ANNEXES ...51

A.1 OGC SensorThings API (STA) introduction ... 51

A.2 OGC SensorThings API plus (STAplus) introduction ... 51

 D2.1 - Technical Architecture

10 P a g e

INDEX OF FIGURES
Figure 1: Overall architecture diagram ..14

Figure 2: Data flow diagram and components levels ...15

Figure 3: In level 1 sensor data is recorded in independent COs services18

Figure 4: In the level 2, the COs data is filtered and validated ...20

Figure 5: In the level 3, data is integrated in a single-entry point ...22

Figure 6: In the level 4, Decision Ready Information is provided ...25

Figure 7: Asynchronous data flow for a notification service. ..26

Figure 8: Protocol for a generic Web-App to display notifications (WebHook as a Subscriber). .28

Figure 9: Protocol for a generic Web-App (as a Subscriber) to display notifications.29

Figure 10: FrontEnd elements and its relation to other components ..30

Figure 11: CitiObs DSS Architecture (integrated with the CitiObs general BackEnd).................38

Figure 12: DSS Mockup – Sensors ...40

Figure 13: DSS Mockup – Sensor Info ..40

Figure 14: DSS Mockup -- Sensor Data Chart ..41

Figure 15: DSS Mockup -- Sensor Data Search ..41

Figure 16: Tables from OGC APIs for Sensors..42

Figure 17: Python library integrated as Orange widget. ...44

Figure 18: TAPIS integrates NiMMbus as a feedback widget. ...45

Figure 19: NiMMbus main interface to create a feedback item (a comment in this case)46

Figure 20: UML diagram on how the project top level of the back end connects to Copernicus,

GEOSS and the GDDS ...47

INDEX OF TABLES
Table 1: Comparison of existing dashboards and platforms ..31

Table 2: Core User Requirements for DSS ..38

 D2.1 - Technical Architecture

11 P a g e

ACRONYMS

Acronym Full name

AQI Air Quality Index

API Application Program Interface

ARD Analysis Ready Data

CAMS Copernicus Atmosphere Monitoring Service

CO Citizen Observatories

CS Citizen Science

DRI Decision Ready Information

DSS Decision Support System

FROST-Server FRankhofer Opensource SensorThings-Server

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IoT Internet of Things

ISO International Organization for Standardization

JSON JavaScript Object Notation

LCS Low-Cost Sensors

MQTT Message Queuing Telemetry Transport

OData Open Data Protocol

OGC Open Geospatial Consortium

 D2.1 - Technical Architecture

12 P a g e

REST REpresentational State Transfer

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

STA Sensor Things API

STAplus Sensor Things API Plus

SWE Sensor Web Enablement

UML Unified Modeling Language

URL Uniform Resource Locator

WMS Web Map Service

WP Work package

 D2.1 - Technical Architecture

13 P a g e

INTRODUCTION

1.1 Purpose of the document

The purpose of this document is to accompany and describe the deliverable D2.1 that is a

collection of UML diagrams with the general architecture of the project. That is the reason why

the deliverable is of the “other” type. The collection of UML diagrams and this document

introduce the CitiObs architecture, components and their accessibility for external applications

and services; the “outside” view.

The main architecture structures the components in four levels that reflect the evolution of the

data from raw data from sensors to Decision Ready Information (DRI). It describes the data flow

between the levels and how to external users can access the CitiObs data at the different levels.

1.2 Scope of the document

This document presents how external users can access data and services. It does not provide

full details about the internal architecture and its individual components.

This document reflects the current view of the project based on the current state of the art. The

technical architecture may evolve during the project timeline.

For better evaluation of the use of open standards, this document also provides a brief

introduction to the relevant standards that are used to exchange data between components, and

external applications and services.

1.3 Overview of the technical architecture

The aim of the architecture is to harmonize and integrate air quality data sources from different

providers in a system that can apply data quality filters and add semantics to the data for

providing access to raw sensor data, Analysis Ready Data (ARD) and Decision Ready

Information (DRI). The CitiObs data is combined with other sources to provide data services and

create and show Decision Ready Information in a Decision Support System (DSS) which is

expected to be the main FrontEnd system serving the users.

 D2.1 - Technical Architecture

14 P a g e

Figure 1: Overall architecture diagram

The overall architecture as illustrated in Figure 1 comprises a CitiObs BackEnd that collects and

provides the data to the CitiObs FrontEnd. The BackEnd includes separate components from

different Citizen Observatories (COs) that undertake the data collection as input for the

BackEnd that is composed by a synchronous dataflow and an asynchronous notification

service, as well. For illustrating the direct use of OGC STAplus standard for sensor data

collection, the BackEnd also contains STAplus compatible data components.

The CitiObs BackEnd is used by the CitiObs FrontEnd components such as the Decision

Support System, the TAPIS, and analytical tools implemented in Phyton libraries that can be

used e.g. in Jupyter Notebooks.

Low-Cost Sensors (LCS) can address gaps in official air quality networks, especially in urban

settings. However, it is necessary to provide a harmonized framework for validating air quality

data collected by diverse citizen-operated LCS networks. The framework proposed in CitiObs is

a novel, scalable solution for harmonizing, standardizing, applying quality control, and correcting

pollutant measurements across varied LCS networks. As one of the first continental-scale

 D2.1 - Technical Architecture

15 P a g e

implementations of rigorous quality control and correction processes for citizen-sourced data,

CitiObs sets a strong foundation for integrating crowd-sourced data into formal air quality

assessments. In that respect, focusing on the data flow, the architecture can be divided into

levels of data processing, from the raw data (level 1) to Decision Ready Information (level 4). At

each level above level 1, data is transformed, harmonized and improved. The overall data flow

is presented in Figure 2.

Figure 2: Data flow diagram and components levels

At level 1, the raw sensor data is collected via existing APIs operated by participating COs. For

further processing, the stored data from level 1 can be accessed via the OGC STAplus

standard. For evaluating the direct use of STAplus for sensor data collection and storage, SECD

operates an additional Data Server as a deployment of FROST-Server.

At level 2, the ValAir component produces quality controlled, calibrated and validated data,

allocating a data quality level to the data according to their “plausibility”, this is, the assessed

data quality. The resulting data is made available to the next processing level.

 D2.1 - Technical Architecture

16 P a g e

At level 3, the VirtualAir component leverages level 2 data from the different COs and the SECD

FROST-Server and harmonizes ARD data.

At level 4, the MapAir component produces gridded DRI by combining level 3 with external data

from CAMS and other sources, like satellite data and reference data.

The PubSub Service provides a system to generate notifications (a.k.a. alerts or data updates)

to the FrontEnd.

The CitiObs FrontEnd (DSS-Graphical Interface, TAPIS and analytical tools for local

communities) takes information from several levels and presents it in a Graphical User

Interface.

1.4 Structure of the document

The document is organised as follows:

• Section 1 - Introduction: Description of the purpose and scope of the document and its

structure

• Section 2 - Level 1: From sensors to CO services

• Section 3 - Level 2: Quality Control and Validation of the Data (ValAir)

• Section 4 - Level 3: Data integration in a single-entry point (VirtualAir)

• Section 5 - Level 4: Creation of Decision Ready Information (MapAir)

• Section 6 – Asynchronous flow: Notification Service: STA Pub Sub Service

• Section 7 - CitiObs FrontEnd: Graphical User Interfaces

• Section 8 - Connection to other initiatives

• ANNEXES: Introduction to OGC SensorThings API and SensorThings API plus

standards

 D2.1 - Technical Architecture

17 P a g e

SECTION 2: Level 1: From sensors to CO services

Commonly, each Citizen Science (CS) project or CO typically develops their own platforms in a

way to be most efficient and convenient for their community. This approach indirectly introduces

the creation of data silos. Even if each CS or CO offers their data on the Internat using their API,

this is done in a way that maximizes the interest and priorities of their use. Consequently, this

results in a myriad of data formats and data sharing protocols. Commonly, the individual sensor

measures air quality parameters and sends measurements in raw data format to a CO service

that stores these measurements. The services hosted by the COs can be a simple storage

facility or may include some degree of quality control to reduce spatial and temporal

uncertainties. The CO offers access to historical and current measurements via an API. The

project recognizes the resource limitation of some of the individual COs, so that, it is unrealistic

to request every individual CO to change their systems into supporting a common API.

To overcome the data isolating via different APIs and data formats, the use of standards is

applied. For CitiObs, we have identified three possible approaches:

• The hardware of the sensors themselves could be reprogramed to send the data to the

storage service. This communication could be done by STA or STAplus using MQTT.

• The sensor uses a proprietary communication schema to communicate with the COs

data services, but the stored data is offered by the service in an open standard, e.g. STA

or STAplus.

• Neither the sensor nor the service offers access to the data using an open standard.

Instead, the data is imported by a bigger system that can offer data via STA or STAplus.

For the CitiObs architecture, we are facing all three approaches. The CitiObs Data Server offers

the direct use of STAplus for uploading raw sensor data, data calibration and querying of the

data. NILU develops a system called NILU Sensor Data Platform (NSDP) (previously called

iFLINK) that falls into the second approach where the raw data is collected via an established

system, but the stored sensor data will be made available via STAplus (see Figure 3). RIVM has

a system that also falls into the second approach where established systems collect the sensor

data but a STA or STAplus API allows querying the data. Finally, FabLab operates a system

accordingly to the third approach: the data is collected and processed internally but made

available via the STAplus API developed by NILU.

 D2.1 - Technical Architecture

18 P a g e

Figure 3: In level 1 sensor data is recorded in independent COs services

The adoption of a single API (STA) makes the creation of aggregated datasets easier at the

next level.

 D2.1 - Technical Architecture

19 P a g e

SECTION 3: Level 2: Quality Control and Validation of the

Data (ValAir)

As currently many COs do not use OGC STA standards, CitiObs has a dedicated task to

provide guidelines, and code for illustrating how to translate the APIs to provide sensor data to

STAplus API. At the same time and in this level, CitiObs will provide tools for the application of

standard metadata containing information related to:

• data quality level,

• processing level,

• semantic meaning of the variables measured and its units of measure,

• context under which the data was collected,

• what information can and cannot be gained from the data,

• other details about the data collection process, processing steps, and quality control

process.

This will facilitate both the discovery and the semantic interoperability among datasets and will

make possible later integration in external infrastructures such as GEOSS, INSPIRE or

Copernicus. The data collected through the sensors and wearables will be stored in the local

COs databases when available (in compliance with INSPIRE) and latter included into STAplus

compatible data server or, when the COs do not have their own data repository, it will be stored

in the NILU Sensor Data Platform (NSDP), a distributed and scalable computing/storage

infrastructure for sensors hosted at NILU. NSDP will be compatible with STAplus so metadata

and semantic interoperability among datasets is ensured, and data will be offered with a single

data sharing and access protocol.

Since every CO has a different data quality control system in level1, level 2 will execute a set of

common routines that will be personalized for each CO: ingestion, cleaning and calibration.

Once the data has been through the different steps, it will become part of a good quality dataset

and with the semantics harmonized with other datasets.

There will be one ValAir component detailed in Figure 4 for each CO platform (assuming that

some COs will not share a common platform) such as NSDP from NILU. Exceptions are: For

Smart Citizen from IAAC, adoption is not necessary as their sensor data is made available via

 D2.1 - Technical Architecture

20 P a g e

NILU system. The RIVM system is already serving STA. The output of each ValAir component

is always Analisys Ready Data that can be queried using STAplus.

Figure 4: In the level 2, the COs data is filtered and validated

One important aspect of level 2 is that data is semantically enriched. To achieve that, all outputs

of a level 2 component are tagged with the right vocabulary. The concepts that need to be part

of this activity are:

• A set of URIs that define the variables that were captured.

• A set of URIs of the Units of Measure corresponding to those variables.

• A set of URIs corresponding to quality flags associated to the data.

 D2.1 - Technical Architecture

21 P a g e

For example, these are variable URIs used in the Smart Citizen Kit:

"description": "Air Temperature"

"definition": http://vocabs.lter-europe.net/EnvThes/22035

"description": "Relative Humidity"

"definition": http://vocabs.lter-europe.net/EnvThes/21579

"description": "Ambient Light"

"definition": https://qudt.org/vocab/quantitykind/LuminousExposure,

"description": "Noise Level"

"definition": https://qudt.org/vocab/quantitykind/SoundExposureLevel

"description": "Barometric Pressure"

"definition": https://vocabs.lter-europe.net/EnvThes/22060

"description": "Particulate matter with an average aerodynamic diameter of up

to 1 micrometer"

"definition": https://www.iqair.com/us/newsroom/pm1

"description": "Particulate matter with an average aerodynamic diameter of up

to 2.5 micrometers"

"definition": https://www.eea.europa.eu/help/glossary/eea-glossary/pm2.5

"description": "Particulate matter with an average aerodynamic diameter of up

to 10 micrometers"

"definition": https://www.eea.europa.eu/help/glossary/eea-glossary/pm10

http://vocabs.lter-europe.net/EnvThes/22035
http://vocabs.lter-europe.net/EnvThes/21579
https://qudt.org/vocab/quantitykind/LuminousExposure
https://qudt.org/vocab/quantitykind/SoundExposureLevel
https://vocabs.lter-europe.net/EnvThes/22060
https://www.iqair.com/us/newsroom/pm1
https://www.eea.europa.eu/help/glossary/eea-glossary/pm2.5
https://www.eea.europa.eu/help/glossary/eea-glossary/pm10

 D2.1 - Technical Architecture

22 P a g e

SECTION 4: Level 3: Data integration in a single-entry

point (VirtualAir)

Currently there is no data service that allows querying data from different COs in Europe or

worldwide to create an extended analysis, e.g. air quality maps at the European level, or

merging data from COs in air quality with COs in biodiversity to research, for example the

connection between pollution levels and the declining of bee population. The VirtualAir

component uses STAplus, common metadata and data validation terminologies (applied in level

2) to deliver a service that aggregates data from different COs in a single endpoint. Instead of

creating permanent consolidated datasets, the component will implement a distributed query

among the integrated COs in their original repositories.

The virtual aggregated dataset is respectful with the original data license. Trust in the data is

possible by propagating data validation levels (data quality), accumulating geospatial user

feedback and added recognition of the originators.

There is only one VirtualAir component that integrates data from different COs called ValAir in

the previous level 2 diagram. VirtualAir will make use of STAplus as an input and output

standard protocol. The output of the ValAir is Analisys Ready Data queryable using STAplus.

Figure 5: In the level 3, data is integrated in a single-entry point

 D2.1 - Technical Architecture

23 P a g e

As illustrated in Figure 5, the interaction between level 2 (ValAir) and level 3 (VirtualAir) is all

standards-based levering STAplus.

It is important to keep in mind that STAplus supports views or collections of observations and

enables thereby the efficient structuring of the level 2 data to be consumed by level 3.

Furthermore, the support for licensing of collections and individual observations ensures proper

re-use of the observations.

 D2.1 - Technical Architecture

24 P a g e

SECTION 5: Level 4: Creation of Decision Ready

Information (MapAir)

MapAir comprises of a suite of algorithms and code designed for generating spatially complete

gridded maps from point-based observations provided by COs. As input, this system integrates

sensor readings with auxiliary information, including model data from the Copernicus

Atmosphere Monitoring Service, satellite data, and air quality monitoring stations. The goal is to

overcome the limitations of point measurements in the sensors, allowing for the creation of

continuous spatial maps of air quality. The project aims to achieve this at two scales: firstly,

covering Europe at a 1 km resolution, subject to sufficient sensor data coverage; secondly,

focusing on individual cities with higher resolution. To address the issue of spatial scales,

MapAir employs a flexible approach to adapt its resolution based on the availability of sensor

data and the specific needs of the target area.

1. For large-scale mapping across Europe, a 1 km resolution is selected to balance the

broad coverage with computational feasibility, making the system effective even with

varying sensor densities across regions.

2. For individual cities or smaller areas, where a sufficient density and number of CitiObs

sensors provide richer data, the set of tools in MapAir can in principle increase the

spatial resolution, potentially down to tens or hundreds of meters.

The high-resolution mapping is particularly valuable for localized scenarios, such as:

• pollution hotspots,

• traffic-related emissions, or

• wildfire impacts,

where more detailed spatial information is critical. Maps for these specific cases will be

generated only on demand and when sufficient sensor information is available, integrating the

sensor data with relevant auxiliary sources to provide targeted, accurate assessments of air

quality in those regions.

The output from MapAir is Decision Ready Information consisting of geospatial datasets in

gridded formats such as GeoTIFFs, NetCDFs, or other geospatial representations, providing the

best estimates of PM2.5 concentrations. The practical application of MapAir involves

 D2.1 - Technical Architecture

25 P a g e

demonstrating its capabilities by generating European-scale PM2.5 maps at a 1 km spatial

resolution (e.g. annual or monthly averages) and ad-hoc demonstrator maps for specific

scenarios like individual cities or wildfire-affected areas. It is important to note that the intended

use of MapAir is primarily for demonstration purposes that can inform a future procedure for the

CAMS product (see Figure 6). However, there are no plans for operational deployment within

the project timeframe.

Figure 6: In the level 4, Decision Ready Information is provided

Like in level 3, the structuring of observations into collections with appropriate licensing provided

by VirtualAir ensures the proper reuse of the observations in MapAir when producing the DRI

products available to the users.

 D2.1 - Technical Architecture

26 P a g e

SECTION 6: Notification Service: STA Pub Sub Service

Sections 2 to 4 describes a linear synchronous flow that gives access to time series of that can

be queries and sub-setted by space and time intervals. These queries work in the “pull” mode,

where the FrontEnd requests data to the BackEnd, as a result of user actions on the GUI (this is

how the classical web interactions between web browsers and web servers happen). In this

section, we describe a different dataflow that uses the “push” mode. The protocol can be

decomposed in two actions:

• Subscription (Sub): As a request from the user, the FrontEnd subscribes to a particular

“topic” (that is a subset of the new observations arriving two the system).

• Publication (Pub): Every time that a new observation is received and if is part of the

subscribed topic, the subscriber receives a message with the new observation.

For that reason, these kinds of protocols are called PubSub.

Figure 7: Asynchronous data flow for a notification service.

In case the protocol is implemented in a web application, the protocol requires a new

component called WebHook that keeps a permanent connection between the Web-app and the

subscriber that is maintained with WebSockets (a new bidirectional protocol adopted in HTML5

 D2.1 - Technical Architecture

27 P a g e

that supports “push” mode). The WebHook relays messages to the Web-app when new

observations are notified from another component called WebHub. The WebHub acts as

publisher of new observations. While the Web-app and the WebHook communicates via HTTP

and WebSockets, the WebHook and the WebHub communicate via HTTP. The WebHub and

the STAplus service communicate via MQTT. Actually, both the WebHook and the WebHub are

only necessary because the web browsers are not capable to directly communicate via MQTT.

As a bonus, the WebHub and the WebHook provide scalability as they can act as a proxy for

common subscriptions (see Figure 7).

Web-App and WebHook are the client side of the system, and they act as a Subscriber. The

Hub and the STAplus Service are the server side of the system, and they act as a Publisher.

This new architecture requires some experimentation and, for that reason, CitiObs made two

implementations for the client side. Figure 8 shows the protocol of one of these

implementations, where the Web-App establishes a WebSocket connection to a WebHook for

each subscription that it needs to do. During the establishment of the WebSocket connection

(handshake), the Web-App sends all the information needed for the Subscription directly to the

WebHub. In this case a different WebSocket connection is needed for each subscription.

 D2.1 - Technical Architecture

28 P a g e

Figure 8: Protocol for a generic Web-App to display notifications (WebHook as a Subscriber).

Figure 9 shows the second implementation where the Web-App establishes a WebSocket

connection first. Then, the Web-App sends the subscription request directly to the WebHub.

In both implementations there is a process of Validation of intent between the WebHub and the

WebHook to validate the intention of the topic subscription. After that, the WebHub establishes

a MQTT subscription to the Publisher (STAplus service).

When a new observation is produced that is compatible to a particular topic, the WebHub

receives the notification for the topic with the new information and sends a POST message to

the WebHook. The WebHook checks the information and sends it to the Web-App through the

WebSocket connection established at the beginning of the process.

 D2.1 - Technical Architecture

29 P a g e

Figure 9: Protocol for a generic Web-App (as a Subscriber) to display notifications.

 D2.1 - Technical Architecture

30 P a g e

SECTION 7: Graphical User Interfaces

The separation of responsibilities between the BackEnd and the FrontEnd and the use of

internation standard protocols and formats allow for multiple GUIs to be provided to different

user profiles. CitiObs provides 3 different GUIs for the data (see Figure 10). The main tool for

visualizing the ARD and DRI is the Decision Support System (DSS). In addition to that, CitiObs

is developing two other tools targeted at local communities. One is the web app called TAPIS,

that allows for easy direct access and query to sensor observations via STAplus, and the

second is based on the use of Python libraries that also access STAplus data and that can be

directly used in the Orange Data Mining desktop application.

Figure 10: FrontEnd elements and its relation to other components

 D2.1 - Technical Architecture

31 P a g e

7.1 Decision Support System and Dashboard

This component is the main user interface foreseen in the project. It allows for the visualization

of raw data, Analysis Ready Data and Decision Ready Information. In addition to visualization, it

will have tools for data analysis tailored for citizens and professionals. Their internal structure is

still not fully decided, as this will be co-designed with the Citizen Observatories participating in

the project.

7.1.1 Overview & Design Criteria

To enhance the design of the CitiObs Decision Support System (DSS), we conducted a

comprehensive review of existing air quality dashboards and platforms. Our analysis revealed a

spectrum of approaches to geospatial air quality visualization, ranging from visually appealing

and user-friendly interfaces, such as AirVisual Earth and Plume Labs, to detailed and research-

oriented platforms like PurpleAir and OpenAQ.

Each dashboard effectively combines real-time data, interactive maps, pollutant breakdowns,

and health advisories, making them invaluable resources for both the general public and

experts. Table 1 presents a structured comparison of these air quality dashboards and

platforms, highlighting their unique features and strengths. The table emphasizes critical

aspects such as community involvement, mobile accessibility, real-time data integration, health

guidance, and regional focus. This comparative analysis aims to identify the most relevant

features for CitiObs, ensuring that the system meets the diverse needs of its users while

providing accurate and actionable air quality information.

Table 1: Comparison of existing dashboards and platforms

Dashboard Key Features Strengths Reference

AirVisual Earth 3D interactive

map, real-time

Air Quality Index

(AQI), pollution

movement

Visually

engaging, global

scope, weather

integration

https://www.iqair.com/earth

AirNow (EPA) Health guidance, Clear public

health advice,

https://www.airnow.gov

https://www.iqair.com/earth
https://www.airnow.gov/

 D2.1 - Technical Architecture

32 P a g e

AQI breakdown U.S.-focused

Plume Labs Real-time

forecasting,

personal air

quality monitor

Forecasting

insights, mobile-

friendly,

personalized

alerts

https://air.plumelabs.com/en

BreezoMeter Pollutant details,

heatmaps,

health/activity

suggestions

Health

integration,

responsive,

actionable

recommendation

s

https://www.breezometer.com/air-

quality-map/

PurpleAir Community-

based sensors,

customizable

data, hyper-local

Granular data,

community-

driven, localized

insights

https://www.purpleair.com

OpenAQ Open-source

data, API

access,

customizable

filters

Researcher-

friendly, global

open-access

data

https://explore.openaq.org

World Air Quality

Index

Global map, AQI

levels, health

advice

Easy-to-

understand,

color-coded AQI,

extensive global

reach

https://waqi.info

Sensor.Communit

y

Real-time

PM10/PM2.5,

crowdsourced

Community-

driven, highly

localized

https://sensor.community/en/

https://air.plumelabs.com/en
https://www.breezometer.com/air-quality-map/
https://www.breezometer.com/air-quality-map/
https://www.purpleair.com/
https://explore.openaq.org/
https://waqi.info/
https://sensor.community/en/

 D2.1 - Technical Architecture

33 P a g e

data

Clarity Movement Low-cost

sensors,

customizable

alerts, mobile-

friendly

Scalable for

urban

monitoring,

responsive

design

https://www.clarity.io/air-quality-

monitoring-solution/cloud/dashboard

Air Care (My

Earth)

Mobile-focused,

AQI forecast,

health

recommendation

s

Personalized

alerts, mobile-

first, location

tracking

Google Play

AirCasting Wearable

monitors,

heatmaps,

crowdsourced

data

Citizen science,

open-source,

collaborative

data gathering

http://aircasting.org/

Weather Channel

Tracker

AQI + weather,

forecast data,

health alerts

Accessible,

health + weather

synergy

https://weather.com

Windy.com Animated

pollution and

weather maps,

forecast

High

interactivity,

weather

integration

https://www.windy.com

CAMS

(Copernicus)

Global AQI,

pollutant layers,

research-grade

data

High-resolution,

global

forecasting, ideal

for research

https://atmosphere.copernicus.eu

BreatheLife Global health

campaigns, air

WHO-backed,

health-centric

https://breathelife2030.org

https://www.clarity.io/air-quality-monitoring-solution/cloud/dashboard
https://www.clarity.io/air-quality-monitoring-solution/cloud/dashboard
https://play.google.com/store/apps/dev?id=5328073173350313277
http://aircasting.org/
https://weather.com/
https://www.windy.com/
https://atmosphere.copernicus.eu/
https://breathelife2030.org/

 D2.1 - Technical Architecture

34 P a g e

quality guidance information

European

Environmental

Agency

Air quality

analysis &

forecasts,

European AQ

standards,

Mobile apps

EU-focused,

standards-based

approach,

animations,

time-lapse

https://airindex.eea.europa.eu/AQI

SenseBox DIY air quality

sensors, open

data sharing

Educational,

hands-on

learning

https://opensensemap.org

ClairCity Citizen

engagement,

pollution

reduction

actions, EU

project

Community-

driven, promotes

pollution

reduction

activities

https://claircity.eu

AirVisual Europe

(AIRUSE)

European AQ

data, interactive

visualization

European scope,

visually

engaging AQ

insights

https://airuse.eu

WecompAIR Citizen-led

monitoring,

personalized

recommendation

s

Collaborative

data sharing,

health-focused

alerts

https://wecompair-project.eu

Dashboard

Citi-Sense Urban AQ

insights, health-

oriented design

Tailored for

cities, focuses

on health

impacts

https://citi-sense.eu

https://airindex.eea.europa.eu/AQI
https://opensensemap.org/
https://claircity.eu/
https://airuse.eu/
https://wecompair-project.eu/
https://monitoring.wecompair.eu/dashboards/policy-monitoring
https://citi-sense.eu/

 D2.1 - Technical Architecture

35 P a g e

WeCount Local pollution

data,

crowdsourced

contributions

Localized focus,

engages

community

https://we-count.net

hackAIR Community

sensors,

pollution trends

Easy entry for

citizen scientists,

visual data

https://platform.hackair.eu

RIVM Samen

Meten

Community

sensor network,

interactive data

analysis, open

access

Citizen science-

driven, open

data,

customizable

analysis

https://analyseren.samenmeten.nl/

RIVM

Luchtmeetnet

National

network, real-

time AQI,

pollutant

concentration

levels

User-friendly,

government-

backed, detailed

pollutant insights

https://aqicn.org/network/luchtmeetn

et/

AtmoSud Regional AQI,

real-time and

forecast data,

pollutant source

breakdown

Regional focus,

health alerts,

pollutant source

attribution &

Time elapse

https://atmosud.org/

Smart Citizen Community-

based sensors,

real-time air

quality

monitoring, open

access data

Empowering

citizen science,

localized data,

easy-to-use

interface

https://smartcitizen.me/kits/

https://we-count.net/
https://platform.hackair.eu/
https://analyseren.samenmeten.nl/
https://aqicn.org/network/luchtmeetnet/
https://aqicn.org/network/luchtmeetnet/
https://atmosud.org/
https://smartcitizen.me/kits/

 D2.1 - Technical Architecture

36 P a g e

After testing and reviewing the aforementioned platforms and tools, we identified several key

considerations for designing an effective geospatial dashboard, particularly for air quality

monitoring:

1. Clarity and Simplicity: Clearly define the dashboard's purpose, emphasize critical

metrics, and prioritize readability to enhance user comprehension.

2. Geospatial Visualizations: Incorporate interactive maps, layered data, heatmaps, and

markers with pop-ups to provide detailed insights into air quality.

3. Data Visualization: Offer a combination of real-time and historical data to facilitate

informed decision-making.

4. User Interactivity: Enable customizable filters, comparison functionality, mobile

responsiveness, and user-specific settings to enhance user engagement and

personalization.

5. Color and Design Choices: Implement intuitive color coding that aligns with air quality

standards, while ensuring accessibility for users with different needs.

6. User Feedback and Guidance: Provide clear Air Quality Index (AQI) interpretation,

health implications, and actionable insights to help users understand air quality levels

and their effects.

7. Performance and Usability: Ensure the dashboard supports real-time updates, is

scalable for high user loads, employs effective caching strategies, and minimizes loading

times for optimal performance.

8. Integration with External Data Sources: Incorporate weather data, air quality data

from official reference stations external, and satellite imagery to enrich the dashboard's

context and data comprehensiveness.

9. Security and Privacy: Utilize reliable data sources and uphold user privacy, particularly

regarding location tracking and data usage transparency.

10. Cross-Platform Compatibility: Ensure the dashboard is compatible across various

devices and provides offline access where feasible.

11. User Testing and Feedback: Conduct user testing to accommodate diverse needs and

implement iterative improvements based on real-world usage feedback.

 D2.1 - Technical Architecture

37 P a g e

7.1.2 Scope and Functionalities

To effectively meet user needs, CitiObs uses a user-driven approach in designing and refining

its dashboard screens. This process includes creating paper sketches, visual mock-ups, and

iterative screen revisions to achieve the desired outcomes. By employing User-Centered Design

principles, CitiObs balances the technical challenges of System-Centered Design with the social

aspects involving users, creating systems that not only support but also motivate users to

engage and learn more effectively. This approach improves productivity, enhances work quality,

reduces support and training costs, and boosts user satisfaction.

CitiObs places strong emphasis on its unique capabilities and added value. A key feature is its

interoperability with STA and STAplus, enabling seamless data exchange and integrating data

from multiple sources. The CitiObs DSS will support interoperability by using VirtualAir as a

BackEnd instead of using its own one.

Specific functionalities of the DSS will include:

• Web-Based Dashboard: Interactive dashboard accessible via the web, featuring real-

time air quality data and user-friendly visualizations.

• Open Data and Data Governance: Visualize sensor data collected by different

communities, always showcasing the origin and license of the data.

• User-Centric Data Management: Allow users to interact with the data in different

formats, e.g. time series, environmental maps, access to raw data, quality control data

and calibrated data, and data aggregated as AQIs.

• Integration with External Tools: Support interoperability with other existing CitiObs

tools, as the tools for communities, to create a comprehensive suite of functionalities for

users.

A more detailed overview of the DSS architecture is shown in Figure 11. The final functionalities

to be included in the DSS will be co-designed together with the stakeholders from the

participating Citizen Observatories, as well as other interested stakeholders at national or

European level.

 D2.1 - Technical Architecture

38 P a g e

Figure 11: CitiObs DSS Architecture (integrated with the CitiObs general BackEnd)

7.1.3 Early Designs & Requirements

Through collaborative sessions and feedback loops, we have iterated design elements to align

with CitiObs's intended user flows and functionalities. Special attention was given to key

aspects such as user interface intuitiveness, data visualization, and system scalability to support

future expansions. Table 2 presents a list of key requirements that emerged from these

iterations, capturing essential technical specifications, and user goals.

Table 2: Core User Requirements for DSS

Req# Description

R1 User will land to single static dashboard with a map overview.

R2 User can select only one/a single parameter from a drop-down menu

R3 User can select a specific city from a drop-down menu

R4
User can select the preferred language of the application to appear from
a drop-down menu

 D2.1 - Technical Architecture

39 P a g e

R5 User can zoom in/out from the map

R6
IoT sensors will be represented by a smart pin and colored in
gradients based on the last aggregated observed value

R7
User can see diagrams for a specific smart pin in the pop-up window by
clicking the view diagrams button

R8
User can select a specific period of times with start and end date from a
calendar

R9 User can download the personalized information in data from or charts form

R10
User can select a quality parameter by clicking a button in the quality dialog
box

R11
User can log into their account by clicking the log in/sign up button in the
tool's header

R12
User can create an account, if he/she doesn’t have one, by clicking the text
button sign up here

R13
User can retrieve its own password, if he had lost it, by clicking the text button
forgot password

R14 User gets a right sided menu that can click to expand

R15
User can get notifications for a satisfied condition by clicking the notification
from the menu

R16
User can create rules for a specific parameter and define a condition, by
clicking new rule button.

R17
User will get a pop-up window with a set of warnings when a condition is
satisfied

 D2.1 - Technical Architecture

40 P a g e

Figure 12, Figure 13 Figure 14 and Figure 15 further illustrate design mockups that highlight the

primary interfaces and functionalities, providing a visual representation of how users will interact

with CitiObs. Figure 12 represents the location of the sensors.

Figure 12: DSS Mockup – Sensors

Figure 13 represents the information associated to a particular sensor when it is queried by

location (left click).

Figure 13: DSS Mockup – Sensor Info

 D2.1 - Technical Architecture

41 P a g e

Figure 14 represents the possibility to show the temporal evolution of a pollutant.

Figure 14: DSS Mockup -- Sensor Data Chart

Figure 15 shows the capacity to select a temporal interval.

Figure 15: DSS Mockup -- Sensor Data Search

These early designs serve as a step to validate assumptions, address potential usability issues,

and ensure that development aligns closely with user expectations.

 D2.1 - Technical Architecture

42 P a g e

7.2 TAPIS – Tables from OGC APIs for Sensors

One of the outstanding features of the SensorThings API is its capacity to respond to complex

data queries based on the ODATA protocol. Example queries can be found in the SensorThings

API and STAplus standards as well as in tutorials such as the one developed by SensorUp

(https://developers.sensorup.com/docs). Even with these resources and tutorials, creating

complex queries can be challenging as ODATA is very flexible querying language. In CitiObs,

we are developing a Browser-based Web Application named TAPIS to illustrate the generation

of ODATA queries leveraging visual representation. TAPIS originally was inspired by the

Orange Data Mining (https://orangedatamining.com/) software visual interface, but it works

entirely as a Web-App. With TAPIS, users can create complex queries by combining visual

elements. Once the user has achieved the desired result represented graphically, TAPIS can be

used to illustrate the corresponding ODATA query that produces the result.

Furthermore, TAPIS supports authentication which enables users to import CSV based

observation data into any STAplus compliant Data Service.

Figure 16: Tables from OGC APIs for Sensors

The Figure 16 illustrates and example where a query results in a table (e.g. a representation of

the original JSON array of results in the response).

https://developers.sensorup.com/docs
https://orangedatamining.com/

 D2.1 - Technical Architecture

43 P a g e

7.3 Python libraries for local communities

A series of analytical software tools for local communities interested in exploring, visualizing,

processing and analyzing data from Citizen Science and Citizen Observatories sensors were

designed. These tools will help citizens to access and combine data from various sensors and

different observation parameters into a unified workspace, allowing them to analyze the data to

identify relationships and trends. The tools will support communities in preparing various

scenarios where sensor data is utilized to achieve specific objectives, such as communicating

the impact of air pollution in a neighborhood, assessing and comparing conditions over time,

and supporting education or informed decisions.

The analytical tools include a library of Python scripts (run locally on a user’s computer) and

Jupyter notebooks (web-based), serving as 'data recipes' for citizens to follow interactively.

They will provide access to SensorThings API and process data for specific scenarios.

Additionally, the library is available from the visual environment for accessing and analyzing

sensor data through an Orange Data Mining desktop application

(https://orangedatamining.com). Orange Data Mining is an open-source software desktop

solution for data analysis, visualization, and machine learning. It offers a unique visual

programming approach that makes data mining and analysis accessible to both novice users

and experienced data scientists. Orange utilizes a canvas-based interface where the developed

python library can become a widget to get data and perform data analysis workflows by

connecting functional components (see Figure 17). This allows for intuitive construction of

complex data pipelines without writing code. Orange provides a wide range of interactive

visualization tools including scatter plots, bar charts, histograms, and heatmaps. These help

users gain insights and identify patterns in their data.

Comprehensive documentation, including step-by-step guides and instructions, will ensure that

even novice users, such as communities with little or no experience in data analytics can

effectively work with the sensor data and derive valuable insights.

https://orangedatamining.com/

 D2.1 - Technical Architecture

44 P a g e

Figure 17: Python library integrated as Orange widget.

7.4 NiMMbus: Geospatial User Feedback

NiMMbus (https://www.nimmbus.cat/) is a solution for storing geospatial resources on the

MiraMon cloud. The system implements the OGC Geospatial User Feedback (GUF) standard

(http://www.opengeospatial.org/standards/guf). It enables the provision of comments, ratings,

questions, etc. that can be associated with geospatial assets on dashboard using data

identifiers. NiMMbus supports GUF resources, it allows for creating a citation of an external

resource (pointing to an external catalogue or repository) and associate feedback items to it.

NiMMbus follows the OGC GUF standard, it facilitated the integration in other systems such as

the DSS, providing a feedback mechanism for this system.

An example of integration of the TAPIS interface with NiMMbus can be seen in Figure 18 and

Figure 19.

https://www.nimmbus.cat/
http://www.opengeospatial.org/standards/guf

 D2.1 - Technical Architecture

45 P a g e

Figure 18: TAPIS integrates NiMMbus as a feedback widget.

The interface of the NiMMbus system is called. After logging in the system is possible to report

our "findings" as a "comment".

 D2.1 - Technical Architecture

46 P a g e

Figure 19: NiMMbus main interface to create a feedback item (a comment in this case)

 D2.1 - Technical Architecture

47 P a g e

SECTION 8: Connection to other initiatives

The following section describes how the project contributes to the Copernicus services, GEOSS

and the Green Deal Data Space (see Figure 20).

Figure 20: UML diagram on how the project top level of the back end connects to Copernicus, GEOSS and the GDDS

8.1 GEOSS

The interconnection to GEOSS implies to be represented in the GEOSS Yellow Pages as a data

provider. In CitiObs, observations are offered in an integrated manner from Virtual Air via OGC

STAplus standard. Currently, GEOSS is not supporting STA or STAplus APIs but it will do that

in the near future. Taking that into consideration, the discovery of STA and STAplus instances

can be done via metadata records registered in a catalogue. The solution is twofold:

• CitiObs will set up a GEOSS compliant metadata catalogue (a geonetwork instance) that

exposes some records with distribution methods consisting on the relevant STA

requests to the right data streams. To make the data access easier for GEOSS users,

CitiObs observations may need to be made available as OGC API Features or WFS.

 D2.1 - Technical Architecture

48 P a g e

• Internal conversations with the Discovery and Access Broker revealed that they are

preparing a connector to the STA or STAplus that may simplify the discovery to a

comprehensive set of data streams of observations.

During the next upcoming months, we will collaborate with the GEO secretariat to request the

inclusion of the CitObs GeoNetwork catalogue in the GEOSS yellow pages.

8.2 Green Deal Data Space

The integration in the Green Deal Data Space is not clearly defined yet. The Data Space

Support Center considers that a Data Space Connector will be necessary to ensure trust. This

technological solution introduces a control plane that connects providers while ensuring digital

contracts. This forces participants into setting up a technology in their infrastructure to

participate in the data space and exchange trusted data. However, this does not solve the main

problem in data spaces: Trust in the data without data integration. Alternatively, an approach

based on integrity and immutable provenance of datasets is proposed in CitiObs. Each trustable

dataset is identifiable by a unique hash that is used as a universal identifier. This dataset is

registered in an immutable catalogue together with the hash and the distributed identifier of the

data provider. This process stores provenance information and ensures that producers remain

in control of their data. Processing in the data space requires a certificate that is issued by the

provider. This certificate may contain license conditions and a list of allowed operations that can

be executed on the data.

8.3 Copernicus In-Situ Component

The Copernicus In-Situ Component is a crucial part of the European Union's Earth Observation

and monitoring programme, Copernicus. This component complements space-based

observations and services by providing essential ground-based, sea-borne, and air-borne data

to enhance the accuracy and reliability of Copernicus products and services. The Copernicus In-

Situ Component is increasingly recognizing the potential of citizen science and crowdsourcing

as valuable sources of ground-based data to complement satellite observations. The

Copernicus programme is exploring ways to incorporate citizen-generated data into its in-situ

component. This approach aims to fill data gaps, enhance the granularity of observations, and

engage the public in Earth observation efforts. CitiObs will dialog with Copernicus to find the

best way to include VirtualAir virtual dataset in their catalogue of in-situ resources. The

 D2.1 - Technical Architecture

49 P a g e

catalogue is a comprehensive database called Copernicus In-Situ Component Information

System (CIS2).

8.4 Copernicus Atmosphere Monitoring Service

The Copernicus Atmosphere Monitoring Service (CAMS) provides consistent and quality-

controlled information related to air pollution and health, solar energy, greenhouse gases and

climate forcing, everywhere in the world.

CAMS is one of six services that form Copernicus, the European Union's Earth observation

programme which looks at our planet and its environment for the ultimate benefit of all

European citizens. Copernicus offers information services based on satellite Earth observation,

in-situ data and modelling.

The Copernicus Atmosphere Monitoring Service is an input to the level 4 (MapAir). The

observations produced by the COs are used to create derivative product that improves

resolution in urban areas. This methodology could pave the way to a future improved CAMS

product. If the European Commission and ESA finds MapAir approach interesting and useful,

they could include it as a requirement for a future tender that improves current CAMS products.

8.5 EOSC

In the last months EOSC had drastically changed the way data and services are integrated in

the EOSC infrastructure. In the past, the integration was done by requesting inclusion in the

EOSC marketplace. The EOSC marketplace no longer exists. Now, the integration of services

requires setting up a node in the EOSC infrastructure. The first nodes (including the EU node)

are starting to emerge, and it is still unclear how the results of an EU project could be included

in one of the emerging nodes.

 D2.1 - Technical Architecture

50 P a g e

REFERENCES

[1] The GeoJSON Format Specification, January 15, 2015. Available at:

https://datatracker.ietf.org/doc/draft-butler-geojson/

[2] OGC 08-094r1, OGC SWE Common Data Model Encoding Standard version 2.0.0. Available

at: http://www.opengis.net/doc/IS/SWE/2.0

[3] OGC 09-001, OpenGIS SWE Service Model: Implementation Standard version 2.0. Available

at: http://www.opengis.net/doc/IS/SWES/2.0

[4] OGC 10-004r3 and ISO 19156:2011(E), OGC Abstract Specification: Geographic information

— Observations and Measurements. Available at: http://www.opengis.net/doc/as/om/2.0

[5] OGC 15-078r6, OGC SensorThings API Part 1: Sensing version 1.0. Available at:

https://docs.ogc.org/is/15-078r6/15-078r6.html

[6] OGC 17-079r1, OGC SensorThings API Part 2 – Tasking Core version 1.0. Available at:

https://docs.ogc.org/is/17-079r1/17-079r1.html

[7] OGC 18-088, OGC SensorThings API Part 1: Sensing version 1.1. Available at:

https://docs.ogc.org/is/18-088/18-088.html

[8] OGC 22-022r1, OGC SensorThings API Extension: STAplus version 1.0. Available at:

https://docs.ogc.org/is/22-022r1/22-022r1.html

[9] RFC 6902, JavaScript Object Notation (JSON) Patch. Available at:

https://www.ietf.org/rfc/rfc6902.txt

[10] OGC 21-068, OGC Best Practice for using SensorThings API with Citizen Science.

Available at https://docs.ogc.org/bp/21-068.pdf

https://datatracker.ietf.org/doc/draft-butler-geojson/
http://www.opengis.net/doc/IS/SWE/2.0
http://www.opengis.net/doc/IS/SWES/2.0
http://www.opengis.net/doc/as/om/2.0
https://docs.ogc.org/is/15-078r6/15-078r6.html
https://docs.ogc.org/is/17-079r1/17-079r1.html
https://docs.ogc.org/is/18-088/18-088.html
https://docs.ogc.org/is/22-022r1/22-022r1.html
https://www.ietf.org/rfc/rfc6902.txt
https://docs.ogc.org/bp/21-068.pdf

 D2.1 - Technical Architecture

51 P a g e

ANNEXES

This annex provides a very high-level overview of the STA and STAplus standards.

A.1 OGC SensorThings API (STA) introduction

The OGC SensorThings API provides an open, geospatial-enabled and unified way to

interconnect the Internet of Things devices, data, and applications over the web. It builds on a

rich set of proven-working and widely-adopted open standards, such as the web protocols and

the OGC Sensor Web Enablement Standards [OGC 08-094r1 and OGC 09-001], including the

OGC/ISO Observation and Measurement data model [OGC 10-004r3 and ISO 19156:2011].

The OGC SensorThings API Part I - Sensing [OGC 15-078r6 and OGC 18-088] provides a

standard way to manage and retrieve observations and metadata from heterogeneous IoT

sensor systems. SensorThings API [OGC 17-079r1] is designed specifically for the resource-

constrained IoT devices and the web developer community. As a result, the SensorThings API

follows the REST principles and uses efficient JSON encoding. SensorThings API supports the

use of the HTTP and MQTT protocols. The API supports powerful data queries based on the

flexible OASIS OData protocol and URL conventions.

A.2 OGC SensorThings API plus (STAplus) introduction

The OGC STAplus [OGC 22-022r1] is a backwards-compatible extension to the SensorThings

API that was created with requirements from Citizen Science. STAplus enriches the

SensorThings data model in a way that allows to model that observations are owned by different

users. In addition to the ownership, users may express a license for ensuring proper re-use of

their observations. The STAplus extension also supports expressing explicit relations between

observations as well as between observations and external resources. Relations can enrich

observations to enable future extensions supporting Linked Data, RDF and SPARQL.

Observation group(s) allow the grouping of observations that belong together.

In the CitiObs architecture the STAplus standard defines the main data exchange protocol, and

it is used for a level of processing to support data collection and querying.

The use of STAplus in the context of Citizen Science from the Cos4Cloud project was published

as an OGC Best Practices [OGC 21-068] document.

